

SNS DTL D-Plate Beam Stop Engineering Review

February 6, 2002

Steve Ellis SNS-03

SNS Linac

Los Alamos

General Requirements

Accommodate two D-plate beam profiles

- Full power but expanded beam from DTL tank #1, 26-mA, 1.0-ms pulse, 60-Hz, 11.7-kW
- Emittance tune beam, reduced duty, 26-mA, 50-μs pulse, 10-Hz, ~100-W
- Stop 7.5-MeV protons
- 20-cm aperture
- Minimum activation
 - Material selection
- Beam diagnostics
 - Beam current measurement
 - Instrumented halo scraper
- Limited term use
 - 2 shifts per day for 90 days (conservative)
- Conventional cooling scheme
 - Single phase, low pressure, water
 - Borrow existing DTL cooling package
- Minimum risk

Beam Stop Assembly

- 3 detail components:
 - Absorber
 - Water jacket
 - Halo scraper
- · Bolted assembly, easy inspection
- Viton o-ring seals, 1/4-in diameter
- No water to vacuum seals or braze joints
- water cooled, integral manifolding

Beam Stop Cooling Scheme

- Flow supply at single apex port, return via tube stubs at equator manifold
- Apex internal nozzle geometry maintains appropriate flow velocity over absorber tip
 - Region of maximum heat deposition
- Spiral channel divider directs flow up and also around absorber
- 2.0-mm by 50.0-mm channel size
- Integral return manifold at equator
- Interface to ports via Swagelok fittings with nylon ferules
 - Simple, inexpensive
- Hose assemblies (non-metallic) from beam stop ports to D-plate submanifold
 - Provide electrical and structural isolation

D-Plate Cooling Water Supply

- D-plate temporarily uses water skid ear-marked for DTL Tank #2
- D-plate flow & ∆T requirements << DTL tank #2 requirements
- Beam stop is primary cooling water user, other diagnostics, EMQ magnets also require cooling
- Sub-manifold at D-Plate
- 100-psig pressure relief valves at D-plate and water skid
- Flow meter in beam stop flow circuit, interlocked to accelerator run permit

Absorber

- Nickel 201
- Machined from forging or cold worked bar stock
- 30° included angle conic
- 20-cm aperture
- 2.0-mm thick
- Spiral flow divider welded or brazed
- Joints EB welded, radiograph inspection
- Helicoil threaded inserts
- Primarily lathe machining

Nickel 201

- Commercially pure nickel
- Nominal thermal properties:

Parameter	Quantity
density	8.89-gm/cc
specific heat	456-J/kg-K
thermal conductivity	79.3-W/m-K

Nominal mechanical (cold worked) properties:

Parameter	Quantity
Young's modulus	30e6-psi
CTE	7.3-µstrain/°F
yield strength	35-90 ksi
tensile strength	60-100 ksi
elongation	35% – 10%

- Sufficient fatigue properties
- Fabrication ease
 - Welding & Machining
- Corrosion resistant
 - Vacuum & cooling system compatible
- Preferred material concerning activation
 - Low neutron yield for 7.5-MeV protons (LEDA data)

Water Jacket

- 304L weldment
- Nests over absorber
- Conventional TIG or MIG welding
- Nominal 1/8-inch wall
- Integral nozzle at inlet to maintain proper flow velocity over absorber tip
- Passivated
- Heat treat/annealing not necessary
- Primarily lathe machining

Segmented Halo Scraper

- 8 segments
- Allows measurement of halo current
- 16.0-cm aperture
- 0.063-in thick nickel segments or petals
- Macor segment insulators, kapton wiring
- DB-9 vacuum feed through connector
- 304 stainless steel spool piece
- Passivated

Fabrication

- Common materials
 - Nickel 201 & 304L stainless steel
 - Ordinary concerning machining difficulty
 - Easily welded & brazed
- Conventional fabrication techniques
 - Primarily lathe work
 - Some welding
- No unusual surface finish requirements
- Reasonable tolerances
- No heat treatment

Fabrication Quality Control

- Material procurement per appropriate ASTM spec
- Traceable material certification for nickel
- Grain size and hardness measurements of nickel raw material
 - Verify material homogeneity, approximate strength
- Pull testing of material samples
 - Verify appropriate material strength, elongation
- All welding & brazing per appropriate AWS specifications
- · Complete radiograph inspection of all welds within nickel absorber
- Complete geometric inspection report of liner and water jacket

Assembly Testing

- Coolant flow test
 - Verify system pressure drop
- Proof pressure test
 - Hydrostatic pressure testing of cooling circuit

Supporting Engineering Analysis

Beam heating

Absorber geometry & material selection

Cooling scheme

- Required flow, convective film coefficients, pressure drop, etc.

Thermal response & thermally induced structural loading

- Calculation of temperature distribution due to beam impingement
- Calculation of corresponding thermally induced stress
- Transient (single pulse) as well as steady state solutions

Internal vacuum loading

Calculation of stress distribution

Cooling water pressure loading

Calculation of stress distribution

Beam Heating

- Energy deposition due to proton kinetic energy loss
- 7.5-MeV H⁻ ions, 26-mA
- 50-μs to 1-ms pulse durations
- Repetition rates up to 60-Hz
- 3-D spatial energy deposition
 - Bi-Gaussian transverse beam distribution

$$p(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} e^{\left(\frac{-x^2}{2\sigma_x^2}\right)} e^{\left(\frac{-y^2}{2\sigma_y^2}\right)}$$

Depth dependant energy loss

Cooling Performance

Nominal Coolant Flow Parameters

Flow	10-gpm
Mean flow velocity	6.0-m/s
Pressure drop	30-psi
Convective film coefficient	$1.96\text{-W/cm}^2\text{K}$
Coolant ΔT (11.7-kW load)	4.5K

Thermal & Structural Analysis

- STATISTION NEITHOUS SOURCE
- Finite element mesh generated with Ideas, ABAQUS subsequently utilized for numerical solution and post processing
- Problem symmetry allowed the use of axisymmetric mesh
- Temperature dependant material properties not necessary
 - Maximum temperature excursion < ~100 K
- Isotropic material behavior utilized with respect to thermal & mechanical properties
- Accurate spatial body heating due to beam impingement applied to mesh with FORTRAN subroutine
 - Function of x,y,z,σ_x,σ_y , penetration depth, beam current, energy
 - Requires very fine mesh to accurately capture behavior near Bragg peak

Full Power Beam Absorber Transient Thermal Response

- Absorber tip axisymmetric model
- 11.7-kW full power beam
- 1.0-ms pulse
- 2.0-cm RMS beam size
- Spatial body heating
- Calculated temperature rise, Kelvins

Full Power Beam Absorber Transient Thermally Induced Stress

- Absorber tip axisymmetric model
- 11.7-kW full power beam
- 1.0-ms pulse
- 2.0-cm RMS beam size
- Spatial body heating
- Calculated thermally induced von Mises Stress, psi

Emittance Tune Beam Absorber Transient Thermal Response

- Absorber tip axisymmetric model
- Emittance tune beam
- 50-μs pulse
- 9.75-Joules per pulse, 97.5-W average power
- 0.66-cm RMS beam size
- Spatial body heating
- Calculated temperature rise, Kelvins

Emittance Tune Beam Absorber Transient Thermally Induced Stress

- Absorber tip axisymmetric model
- Emittance tune beam
- 50.0-µs pulse
- 9.75-Joules per pulse, 97.5-W average power
- 0.66-cm RMS beam size
- Spatial body heating
- Calculated thermally induced von Mises Stress, psi
- Most stringent load case

Full Power Beam Absorber Steady State Thermal Response

- Absorber axisymmetric model
- Full power beam (11.7-kW)
- 2.0-cm RMS beam size
- beam heating applied as surface flux
- Convection along outer surface
- Calculated temperature rise, Kelvins

Full Power Beam Absorber Steady State Thermally Induced Stress

- Absorber axisymmetric model
- Full power beam (11.7-kW)
- 2.0-cm RMS beam size
- beam heating applied as surface flux
- Convection along outer surface
- Calculated thermally induced von Mises Stress, psi

BEAM 2

Absorber Pressure Loading

- Absorber axisymmetric model
- Combined vacuum and external 100-psig coolant pressure results depicted
- Calculated von Mises stress, psi
- Deformed shape plot, highly exaggerated

BEAM-

Vacuum and Pressure Loading Induced Stress Levels

Load Case	Maximum von Mises Stress
Vacuum	675-psi
External Coolant Pressure	4830-psi
Combined	5504-psi

Water Jacket Coolant Pressure Loading

- Water jacket axisymmetric model
- 100-psig coolant pressure applied to inner surface
- Calculated von Mises stress, psi

Analysis Summary

Detailed thermal & structural analysis complete

 Accurate modeling of beam heating, associated induced stresses, pressure loading, elastic material behavior

Conservative design margin estimates:

- 1.5 margin with respect to yielding
- 2.5 margin with respect to tensile failure
- Emittance tune beam
- Margins apply to yielding or failure of nickel fiber along absorber surface only
- Design margin with respect to complete absorber breach is much greater

Design safety margin concerning pressure and vacuum loading is ample

Greater that 4.5 with respect to yield for all components

Current Status

- Engineering analysis complete
 - Design & engineering report near completion
- Drawing package near completion
 - Presently undergoing final engineering check
 - Fabricator modifications/changes must be incorporated
 - » Weld locations, features desired for fabrication ease, work holding, etc.
- Ready for fabricator bids shortly